
Position Paper:

New Mathematics for Exascale Computational Science?
Ulrich Ruede, University of Erlangen, ruede@cs.fau.de

May 7, 2013

Let’s start with the good news first: Mathematics has been and continues to be the most
important contributor to any large scale computational science. This is simply so, since
computational complexity becomes ever more important with faster computers. Once the
systems are large enough, the algorithms with a better asymptotic complexity will always
make the winner. Math journals, such as SINUM or SISC (for which I had served as EIC) are
full of great papers advancing computational science.

However, having said this, we find that these novel algorithms often underperform by many
orders of magnitude. Different from what may be a belief in parts of the math community, it
is not that we just need a few extra weeks for converting matlab to Fortran and MPI.
Designing efficient HPC software requires much more creative research and the
deficiencies are much more fundamental.

• Nothing is more practical than a good theory, but in the math community there is a
deeply rooted misconception about the role of rigorous theory. For example, a
rigorous asymptotic bound of the form 𝑒 ≤ 𝐶 ℎ! has only heuristic implications when
assessing the quality of a discretization for all finite values of ℎ (that is in all practical
computing). Such theorems are a poor basis or for comparing one discretization to another
one of the same or even a different order, as long as the constants remain unspecified.
We need more quantitative theory. Where this is not available, systematic numerical
experiments are as important or even more important than rigorous theory. Some fields of
contemporary applied math have an underdeveloped tradition in systematic algorithmic
benchmarking. This starts with a lack of generally accepted standard test examples.
Therefore, the numerical cost of an algorithm (i.e. the number of flops induced by using a
specific discretization or by a specific solver) is frequently left unquantified. Consequently
rather inefficient algorithms remain in use even when better alternatives exist.
• On modern computer systems, the traditional cost metric of numerical

mathematics (i.e. the Flops for solving a problem) fails increasingly to correlate with
the truly relevant cost factors, such as time to solution or energy consumption. It will be
necessary to quantify much more complex algorithmic characteristics, such as memory
footprint and memory access structure (i.e. cache re-use, uniformity of access, utilization
of block-transfers, etc) processor utilization, communication and synchronization
requirements. These effects must be built into better complexity models – models that
are simple enough that they can be used, but that capture the true nature of computational
cost much better than just counting the Flops.
• For exascale computational science we need to develop a more systematic integrated

algorithm engineering methodology. Starting from the mathematical model, we should
predict a-priori what performance is achievable, and then we must evaluate our
realization with respect to such a prediction, accounting for all the discrepancies. This
must be done on all levels of the “simulation pipeline”, starting with the mathematical
model, the discretization, the solver, its sequential implementation, and eventually its
parallelization. It is essential that this is not just seen as tweaking a given algorithm to run
fast on particular architecture, but as a true co-design. This in particular includes the
design and development of the algorithms and data structures. For example, when it is
known that a 2D multigrid Poisson solver reaches ℎ!-discretization accuracy in less than
30 operations per unknown, then we must justify the use of a more complicated
discretization and more expensive solver for the same problem class. There may be good

reasons, but such algorithmic choices must be based on clear arguments accounting
for the accuracy achieved relative to the cost.
• On the implementation side, often even the sequential version of an algorithm

reaches only a fraction of the peak performance of a core. We should justify why this is the
case. For example, we may find that the memory or communication bandwidth is the
relevant bottleneck. Generally, theory must guide us what bounds for the hardware
performance we must expect, and the design process must be based on a systematic
accounting for the limiting resources. For this it is essential to have realistic a-priori cost
predictions everywhere in the development process. And quite generally, we should be
more honest when assessing parallel performance. “David Bayley’s “Twelve Ways for
Fool the Masses …”1 are still too much in use.

This list of deficiencies provides already enough problems for a multi-decade math research
program, but beyond there are also great opportunities for novel mathematical research
directions. I’ll mention a few:

• With 109 parallel threads (in a future exscale system) we must avoid all unnecessary
communication and synchronization. While research has already staretd in fields such as
dense linear algebra, this is wide open elsewhere, e.g. for iterative solvers. New
asynchronous, communication avoiding algorithms must be designed. Lower bounds
must be found on how much communication/synchronization is necessary to solve a
particular problem. Chaotic relaxation strategies or stochastic and nondeterministic
algorithms may become a key innovation needed for exascale, and they may at the same
time provide for more robustness and built-in fault tolerance overall.
• Exascale will provide the computational power to go from qualitative simulation to

predictive simulation, and from predictive simulation to optimization, parameter
identification, inverse problems; it will enable stochastic simulations and to better
quantify uncertainties.
• Exascale enables us to bridge physically from the meso-scale to human scale.

With mesa-scale, I mean here physical scales such as the cell of a biological system, a
particle in a pile of sand, or a pore in an aquifer. A living human has around 1011 neurons
and 1013 red blood cells, a pile of sand may have 1010 grains. The mesoscale is halfway
between atomic scale and human scale. Mesoscale requires to deal with large numbers
of objects, but such ensembles may become tractable on exascale systems, since with
1018 Flop/s we can still perform O(105) Flop/s for each human blood cell per second. Thus
exascale may offer new possibilities for simulation science that have been out of reach
without. However, to exploit this, new methods must be devised to model and simulate
large mesoscopic ensembles for long enough times. New algorithms must be invented for
this, new modeling paradigms devised. New techniques for validation and verification
are needed: we are not interested to predict each individual blood cell in a human being
accurately, but the ensemble behavior must be physically meaningful and must provide e.g.
physiological insight beyond classical techniques. There are close relations here to
multiscale-modeling and multiphysics, but these fields gain new momentum with the
advent of exascale. A myriad of interesting and open research topics can be derived from
this.

Summarizing: I believe that the advent of exascale forces mathematics to address the
performance abyss that widens increasingly between existing math theory and the
practical use of HPC systems. Tweaking codes is not enough – we must turn back and
analyze where we have not yet thought deeply enough, developing a new interdisciplinary
algorithm and performance engineering methodology. Beyond this, exascale opens
fascinating new opportunities in fundamental research that go far beyond just
increasing the mesh resolution. The opportunities created by asynchronous algorithms
or large scale mesoscpoic modeling are just two examples.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 See a modernized version at:
http://www10.informatik.uni-erlangen.de/Misc/EIHECS6/Hager.pdf	
 http://www10.informatik.uni-erlangen.de/Misc/EIHECS6/Hager.pdf	

